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ABSTRACT Neurotropism is a defining characteristic of alphaherpesvirus pathoge-
nicity. Glycoprotein K (gK) is a conserved virion glycoprotein of all alphaherpesvi-
ruses that is not found in other herpesvirus subfamilies. The extracellular amino ter-
minus of gK has been shown to be important to the ability of the prototypic
alphaherpesvirus herpes simplex virus 1 (HSV-1) to enter neurons via axonal termini.
Here, we determined the role of the two conserved N-linked glycosylation (N48 and
N58) sites of gK in virus-induced cell fusion and replication. We found that N-linked
glycosylation is important to the regulation of HSV-1-induced membrane fusion
since mutating N58 to alanine (N58A) caused extensive virus-induced cell fusion.
Due to the known contributions of N-linked glycosylation to protein processing and
correct disulfide bond formation, we investigated whether the conserved extracellu-
lar cysteine residues within the amino terminus of gK contributed to the regulation
of HSV-1-induced membrane fusion. We found that mutation of C37 and C114 resi-
dues led to a gK-null phenotype characterized by very small plaque formation and
drastic reduction in infectious virus production, while mutation of C82 and C243
caused extensive virus-induced cell fusion. Comparison of N-linked glycosylation and
cysteine mutant replication kinetics identified disparate effects on infectious virion
egress from infected cells. Specifically, cysteine mutations caused defects in the ac-
cumulation of infectious virus in both the cellular and supernatant fractions, while
glycosylation site mutants did not adversely affect virion egress from infected cells.
These results demonstrate a critical role for the N glycosylation sites and cysteines
for the structure and function of the amino terminus of gK.

IMPORTANCE We have previously identified important entry and neurotropic deter-
minants in the amino terminus of HSV-1 glycoprotein K (gK). Alphaherpesvirus-
mediated membrane fusion is a complex and highly regulated process that is not
clearly understood. gK and UL20, which are highly conserved across all alphaherpes-
viruses, play important roles in the regulation of HSV-1 fusion in the context of in-
fection. A greater understanding of mechanisms governing alphaherpesvirus mem-
brane fusion is expected to inform the rational design of therapeutic and prevention
strategies to combat herpesviral infection and pathogenesis. This work adds to the
growing reports regarding the importance of gK to alphaherpesvirus pathogenesis
and details important structural features of gK that are involved in gK-mediated reg-
ulation of virus-induced membrane fusion.
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Membrane fusion is an essential step for entry of enveloped viruses into host cells
(1–3). The process of viral fusion involves the conversion of the viral fusion

protein from a prefusion to a postfusion conformation (2). This conformational change
ultimately results in fusion of the virus envelope with host membranes and deposition
of the virion capsid into the cytoplasm of infected cells. Proper control of virus-induced
membrane fusion is essential for efficient virus replication and spread. Mechanisms of
membrane fusion regulation include receptor binding, proteolytic processing, and pH
dependence (1). In the simplest system, as with vesicular stomatitis virus (VSV), the
fusion protein is the only protein on the viral envelope and mediates both receptor
binding and subsequent fusion (4). Other viruses, such as herpesviruses, require protein
complexes made up of multiple viral proteins to mediate fusion (5).

Herpesvirus fusion is a complex, highly coordinated process. All members of the
herpesvirus family require a heterodimer of glycoprotein H and glycoprotein L (gH/gL),
as well as glycoprotein B (gB), the only fusogenic glycoprotein, to mediate membrane
fusion (5–8). Additionally, some species of herpesvirus such as herpes simplex virus 1
(HSV-1) and HSV-2 require the receptor binding glycoprotein D (gD). To facilitate
membrane fusion in transient systems, it is sufficient to coexpress gD, gH/gL, and gB (9).
However, the roles played by individual fusion complex members in mediating mem-
brane fusion are poorly understood. Current evidence suggests that gD binds a
receptor and transfers, presumably via a conformational change, an activation signal
through gH/gL to gB, which then undergoes a conformational change from the
prefusion to postfusion state (10).

Regulation of herpesvirus fusion is incompletely understood, and findings from
transient systems may be misleading. It is clear that in the context of viral infection
there are more viral proteins than the minimal fusion complex involved in the fusion
process. This is most apparent in HSV-1 mutants that are found to exhibit dysregulated
fusion resulting in the formation of syncytia. Mutations causing significant syncytial
(syn) phenotypes have been found predominantly in HSV-1 gB, gK, and UL20 genes
(11–15). gB is the conserved and only fusogen of all herpesviruses, whereas gK and
UL20 are conserved only in neurotropic alphaherpesvirus and are not part of the
minimal fusion complex (16). Neither gK nor UL20 possesses intrinsic fusogenic activity.
The identification of syncytial virus strains which possess mutations in either gK or UL20
suggests a role for these proteins in the process of alphaherpesvirus fusion. Indeed,
early studies demonstrated that transient expression of gK and UL20 with the minimal
fusion complex resulted in a decrease in fusion mediated transiently, while syncytial
mutations in gK did not increase cell-to-cell fusion (17).

gK is a multiple-transmembrane domain-containing glycoprotein that is found in
the envelope of viral particles (18, 19). We along with others have shown that gK and
UL20 form a complex in multiple alphaherpesvirus species (20–23). Further, we have
demonstrated that the gK/UL20 complex interacts with fusion complex members gB
and gH/gL (24). Specifically, we showed a direct interaction between the gK amino
terminus and gB (24, 25). Importantly, we have shown a role for the amino terminus of
gK in HSV-1 neurotropism as an HSV-1 with a deletion of amino acids 31 to 68 of the
amino terminus of gK [gK(d31– 68)] is unable to enter neurons via the axonal termini
both in vitro and in vivo (19, 26, 27). A virus with this mutation in gK is currently in
development as VC2, an HSV-1 vaccine that has been shown to be protective against
both HSV-1 and HSV-2 infection in multiple animal models (26; S. Stanfield, P. J. F. Rider,
J. Caskey, F. Del Piero, and K. G. Kousoulas, submitted for publication). VC2 has also
been demonstrated to be highly immunogenic in monkey and mouse models (28, 29).

To determine the contribution of the extracellular N-linked glycosylation sites
located at residues 48 and 58 to the function of HSV-1 gK, we constructed three mutant
viruses in which each asparagine residue was mutated to alanine independently as well
as a double N-linked glycosylation site mutant. We found that virus lacking the N58 or
lacking both sites was severely defective for regulation of viral fusion. We extended our
analysis to include the amino terminal cysteines of gK. Our results demonstrate that
glycosylation of HSV-1 gK is important to the regulation of fusion and that similarly the
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extracellular cysteine residues of gK are critical for gK’s role in regulation of HSV-1
fusion.

RESULTS
Analysis of conserved structural elements in the amino terminus of alphaher-

pesvirus gKs. HSV-1 gK is a four-transmembrane domain-containing glycoprotein with
three extracellular and two intracellular domains (Fig. 1A). Comparative analysis of the
primary structures for 17 alphaherpesvirus gKs from Table 1 reveals two conserved
N-linked glycosylation sites in all species, except for the fruit bat gK, which possesses
only one N-linked glycosylation site (Fig. 1B). Interestingly, the distance between the
N-linked glycosylation sites appears to be well conserved among herpesvirus species
which infect similar hosts. This is most evident among the primate and nonhuman
primate alphaherpesviruses in which the N-linked glycosylation sites are all separated
by 11 amino acids (which includes the asparagine residues), with the most striking
comparison being that between simplex and varicella alphaherpesvirus species. Fur-
thermore, with the exception of gallid herpesvirus, in the avian alphaherpesviruses,
N-linked glycosylation sites are separated by 8 amino acids. In our previously predicted
three-dimensional (3D) structure of gK (19), the N-linked glycosylation sites bracket the
second predicted beta-pleated sheet (Fig. 1C). This structural position of the N-linked
glycosylation sites bracketing a beta strand is conserved in several alphaherpesvirus
gKs for which we have predicted structures (data not shown).

Construction and characterization of HSV-1 N-linked glycosylation mutants. To
determine the role of gK N-linked glycosylation on infectious virus production and
virus-induced membrane fusion, we generated three recombinant viruses, two in which

FIG 1 Conservation of alphaherpesvirus gK N-linked glycosylation sites. (A) Experimentally determined
topology of HSV-1 gK illustrating location of N-linked glycosylation sites (red) and conserved cysteine
residues. (B) Analysis of N-linked glycosylation site spacing (number of amino acids) across 17 distinct
alphaherpesvirus gKs. (C) Ribbon diagram of the HSV-1 gK model placed in a hypothetical membrane.
N-linked glycosylation sites are indicated by red spheres. Surface representations of extra- and intracel-
lular phospholipid head groups are shown in green and gray, respectively. *, sequences that are
divergent from other sequences with respect to conserved N glycosylation and cysteine residues across
all alphaherpesviruses examined. NA, sequence has only one canonical N-glycosylation site.
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either the first asparagine (N48A) or the second asparagine (N58A) of the predicted
N-linked glycosylation sites was replaced with alanine and one recombinant virus
having both asparagines replaced with alanines (N48A N58A) (Fig. 1). Recombinant
viruses were generated using the VC1-F-BAC virus. The VC1-F-BAC virus is a modified
HSV-1(F) strain cloned as a bacterial artificial chromosome (BAC) that possesses a V5
epitope-tagged gK and a Flag-tagged UL20 that have been described previously (30).
BAC-derived virus was reconstituted on the gK-complementing cell line VK302. Virus
titers were determined, and the virus was used to infect either Vero cells or the
gK-complementing cell line VK302. At 48 h postinfection (hpi) cells were fixed, and
immunohistochemistry (IHC) was performed to identify HSV-positive plaques (Fig. 2).
Readily apparent was the extensive syncytial formation in Vero cells infected with the
mutant virus N58A, in which the second N-linked glycosylation (N58-to-A58 change)
was mutagenized, as well as with the virus N48A N58A having both N-linked glycosy-
lation sites replaced with alanines. In contrast, plaques from virus in which the first
N-linked glycosylation (N48A) was mutagenized were indistinguishable from wild
type-plaques (Fig. 2).

To determine the effect of glycosylation mutagenesis on the gK protein, we per-
formed a Western blot analysis on protein extracted from cells infected with the
parental VC1 virus or with the glycosylation mutant viruses. Vero cells were infected at
a multiplicity of infection (MOI) of 5 for 20 h and lysed, and Western blot analysis was
performed. Infection of Vero cells with the parental virus yielded a single band of
approximately 37 kDa, as previously described (31, 32) (Fig. 3A). However, gK from cells
infected with either the N48A or N58A virus appeared as two bands, migrating with
apparent molecular masses of 33 and 30 kDa. N58A gK was produced consistently at
lower levels than parental or N48A gKs. The double glycosylation mutant was not
detectable via Western blotting of protein lysates. However, after immunoprecipitation
using the V5 tag, all gKs were detected, including the gK specified by the double
glycosylation mutant, which was now visible as a faint protein species migrating with
an apparent molecular mass of 29 kDa (Fig. 3B).

To determine the effect of gK N-linked glycosylation on virus production, the
replication kinetics of mutant viruses were examined. Vero cells were infected at an MOI
of 0.1, and supernatants were separated from monolayers at 0, 4, 12, 24, and 36 h
postinfection. Samples were frozen, and titers were determined via plaque assay. All
glycosylation site mutant viruses reached titers similar to the titer of the parental VC1
virus in either the supernatant or monolayers (Fig. 4). However, the N58A virus and the
double glycosylation mutant virus displayed approximately 1-log-lower titers in both
supernatant and cell pellet fractions at 24 h, suggesting a possible delay in assembly,
envelopment, or egress of this virus.

TABLE 1 Accession numbers for sequences used in this study

gK sequence GenBank accession no.

Anatid herpesvirus 1 YP_003084366.1
Bovine herpesvirus 1 NP_045305.1
Cercopithecine herpesvirus 2 YP_164497.1
Chimpanzee alpha-1 herpesvirus YP_009011041.1
Equid herpesvirus 1 YP_053051.1
Falconid herpesvirus 1 YP_009046554.1
Felid herpesvirus 1 YP_003331525.1
Fruit bat alphaherpesvirus 1 YP_009042116.1
Gallid herpesvirus 1 YP_182337.1
Human herpesvirus 2 YP_009137206.1
Human herpesvirus 3 NP_040128.1
Macacine herpesvirus 1 AIA09548.1
Meleagrid herpesvirus 1 NP_073348.1
Papiine herpesvirus 2 YP_443901.1
Psittacid herpesvirus 1 NP_944381.1
Saimiriine herpesvirus 1 YP_003933787.1
Suid herpesvirus 1 YP_068321.1
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It is known that N-linked glycosylation plays a major role in the proper folding and
processing of glycoproteins (33, 34). Specifically, N-linked glycosylation has been
demonstrated to facilitate proper disulfide bond formation (35). In nearly all alphaher-
pesvirus gKs, there are four extracellular cysteines: three in domain 1 and one in
domain 3 (Fig. 5A). Alignment of gK primary structures similar to the one shown in Fig.
1B demonstrates the conservation of spacing between cysteine residues and N-linked
glycosylation sites across all human and nonhuman primate simplex viruses (Fig. 5B).
Remarkably, the spacing between the second and third cysteine residues of domain 1
is 33 amino acids in all but one alphaherpesvirus species that possess three or more
cysteine residues in domain 1. Further, in our predicted structure for gK, all four

FIG 2 Plaque phenotypes of HSV-1 gK N-linked glycosylation mutants. Vero cells infected with the indicated virus for 48 h were
fixed, and immunohistochemistry was performed with the parental virus (VC1) and N-linked glycosylation mutants N48A,
N58A, and N48A N58A, as indicated.

FIG 3 Mutation of N-linked glycosylation sites leads to increased mobility of HSV-1 gK protein. Unin-
fected Vero cells (Un) are compared to Vero cells infected with the wild-type HSV-1(F), with the parental
strain (VC1) with V5-tagged gK, and with VC1-derived single (N48A and N58A) and double (N48A N58A)
N-linked glycosylation mutants. (A) Cells were infected at a multiplicity of infection of 5 and lysed at 20 h
postinfection. Lysates were separated via SDS-PAGE and analyzed by Western blotting. VP5 (UL19) is the
major capsid protein of HSV-1. VP5 and tubulin served as loading controls. (B) Lysates were immuno-
precipitated (IP) with V5 antibody, and precipitates were separated via SDS-PAGE and analyzed by
Western blotting.
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extracellular cysteines are predicted to be near enough to one another to potentially
form intramolecular disulfide bonds (Fig. 5C).

To address the role of the extracellular cysteine residues of HSV-1 gK, we con-
structed four mutant viruses, each with a deletion of a single cysteine, denoted as dC37,
dC82, dC114, and dC243. Viruses were recovered on the complementing cell line
VK302, and their plaque morphologies were characterized on both Vero and VK302
cells. The dC37 and dC114 viruses formed very small plaques on Vero cells, similar to
those of the gK-null virus plaques, while the viruses with mutations in either C82 or

FIG 4 Mutation of N-linked glycosylation sites does not affect peak viral titers. Vero cells were infected with either the parental
strain (VC1), VC1-derived single N-linked glycosylation mutants (N48A and N58A), or a double mutant (N48A N58A).
Supernatants and cell pellets, as indicated, were separated at specified hours postinfection, and plaque assays were performed
to determine viral titers.

FIG 5 Conservation of cysteine residues in the amino terminus of alphaherpesvirus gKs. (A) Experimentally determined
topology of HSV-1 gK illustrating location of cysteine residues in HSV-1 gK. (B) Analysis of cysteine residue spacing (number
of amino acids) for the amino terminus of 17 alphaherpesvirus gKs. (C) Surface representation of the predicted 3D model
of HSV-1 gK placed in a hypothetical lipid bilayer. A close-up view of the cysteine and asparagine residues in the
extracellular domains is featured in a transparent surface representation of the gK model. Colors in panels B and C match
those in panel A. *, sequences that are divergent from other sequences with respect to conserved N glycosylation and
cysteine residues across all alphaherpesviruses examined. NA, number could not be calculated due to differences in
conserved residues.
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C243 exhibited a strong syncytial (syn) phenotype (Fig. 6). Importantly, both dC37 and
dC114 viruses were efficiently complemented on VK302 cells. gK syn viruses have been
reported to be complemented (reverted) to a wild-type plaque phenotype on VK302
cells (36). However, both dC82 and dC243 retained their syncytial phenotypes even in
VK302 cells, suggesting that the cysteine mutations result in syncytial phenotypes that
are dominant.

To determine the effect of the cysteine mutations on the level of gK production,
Western blot analysis was performed as described in Materials and Methods. Loss of any
of the cysteine residues did not alter the apparent molecular mass of gK in comparison
to that of the parental VC1 virus gK (Fig. 7). Overall protein levels of gK were found to
be reduced by the absence of individual cysteines.

To determine the effect of cysteine mutation on virus growth, we conducted growth
analysis of all mutants in both Vero cells and the gK-complementing cell line VK302.
Supernatants and cell pellets were assayed separately. dC37 and dC114 exhibited the
greatest defects in growth (Fig. 8). dC37 and dC114 virus titers in the supernatant at 36
hpi were 4 logs lower than the parental VC1 virus titers. dC82 and dC243 viruses had
higher peak titers in the supernatant, but the differences between the titers of these
viruses and those of dC37 and dC114 were not significant. A similar pattern was seen
in cell pellet titers, with dC37 and dC114 achieving approximately 3-log-lower peak
titers than those of the VC1 parental virus. Titers of dC82 and dC243 viruses obtained
from cell pellets were significantly lower, but the viruses reached higher peak titers

FIG 6 Plaque phenotypes for HSV-1 gK cysteine mutants. (A) Immunohistochemistry of Vero cells and gK-complementing cells
(VK302) infected for 48 h with parental virus (VC1) or with cysteine deletion mutant viruses. (B) Topology of HSV-1 gK illustrating
putative disulfide bonding between conserved cysteine residues, indicated by solid lines.

FIG 7 Mutation of HSV-1 gK cysteine residues has a limited effect on gK protein levels in infected cells.
Uninfected Vero cells (Un) are compared to Vero cells infected with the parental strain (VC1) with
V5-tagged gK or VC1-derived cysteine mutants. Cells infected with the indicated viruses at an MOI of 5
were lysed at 20 h postinfection. Lysates were separated via SDS-PAGE and analyzed by Western blotting.
VP5 (UL19) is the major capsid protein of HSV-1 and served as a loading control. Numbers underneath
the blot are ratios of intensity of V5/gK to VP5 for each lane.
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than the dC37 and dC114 viruses. Importantly, all viruses tested were complemented
for growth on VK302 cells, and titers were indistinguishable from those of the parental
VC1 virus at all time points assayed, both in supernatants and cell pellets.

DISCUSSION

Wild-type HSV-1 strains cause a limited amount of cell-to-cell fusion, while muta-
tions in three genes coding for gB, gK, and UL20 cause extensive syncytium formation,
defining these genes as key players in virus-induced membrane fusion phenomena. All
three proteins are membrane proteins found in mature virion particles. gB is the
sole herpesviral fusogen. UL20 is a nonglycosylated four-transmembrane domain
envelope protein, which forms a complex with gK in all alphaherpesvirus species
tested and interacts with carboxyl terminus of gB (20, 22–24, 37, 38). gK is the only
HSV-1 protein in which most syncytial mutations map to the extracellular portion of
the protein and specifically its amino terminus, which is also known to interact with
the amino terminus of gB. In this regard, the gK/UL20 protein complex appears to
regulate gB’s fusogenicity through direct binding to gB at both its extracellular and
intracellular domains. Here, we have explored the role of gK’s amino-terminal N
glycosylation and the conserved cysteine residues in infectious virus production
and membrane fusion by generating single and double mutant viruses. The results
indicated that at least one of the two N glycosylation sites and two of the four
conserved cysteine residues play crucial roles in the function of gK in infectious
virus production and membrane fusion.

Glycoproteins embedded in viral envelopes serve important roles for entry, assem-
bly, immune evasion, signaling, and pathogenesis (39). Specifically, N-linked glycosy-
lation of the influenza virus hemagglutinin and neuraminidase has been shown to
influence receptor binding and virulence (40–44). A major focus of work in glycobiology
is the role of N-linked glycosylation in protein processing (34, 45–47). N-linked glyco-
sylation takes place in the endoplasmic reticulum, and further modifications to glycans

FIG 8 Cysteine mutants are defective for growth in both cell pellet and supernatant fractions. Vero cells (A and B) and
gK-complementing (VK302) cells (C and D) were infected with parental virus (VC1) and the indicated cysteine mutant
viruses. Supernatants and cell pellets, as indicated, were separated at various times postinfection, and plaque assays were
performed to determine viral titers.
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occur in the Golgi network. However, initial glycosylation in the endoplasmic reticulum
occurs cotranslationally, which is thought to be critical for proper folding of nascent
proteins. Seminal work of Hammond et al. demonstrated a critical role for N-linked
glycosylation in viral glycoprotein folding (48), and it has since been shown that the
positioning of glycosylation sites is important for optimal protein expression (33).
N-linked glycans are critical for directing proper folding of viral and cellular
proteins, and proper folding is important for correct disulfide bond formation (35,
45, 49, 50). Not surprisingly, due to the importance of glycosylation to protein
processing, mutations in glycosylation have profound effects on virion assembly.
N-linked glycosylation sites have been shown to be important for proper localiza-
tion and subsequent incorporation of the Ebola virus envelope glycoprotein (GP)
into pseudovirions and Lassa virus glycoprotein GP-C cleavage (51, 52). N-linked
glycosylation of West Nile and Zika virus envelope proteins influences assembly and
infectivity in a cell-type-specific manner (53–56). Mutations in VSV G protein that
affect N-linked glycosylation sites lead to improper disulfide bonding affecting
transport and maturation of the viral fusogen (57).

The role of N-glycosylation on infectious virus produced and virus-induced cell
fusion. A striking feature of N-glycosylation sites of gK is the largely conserved spacing
of these sites among most alphaherpesviruses, suggesting a conserved role in the
overall structure and function of gK. N-glycosylation may contribute to preservation of
the overall structure of the amino terminus of gK and facilitate interactions of gK with
the amino terminus of gB or potentially with other viral and cellular proteins. Mutations
in gK leading to syncytium formation support a role for gK in the negative regulation
of fusion. Indeed, in transient-transfection assays expression of HSV-1 gB, gD, and
gH/gL along with UL20 and gK led to a decrease in the amount of fusion, while the
same transfection where wild-type gK was replaced by gK carrying a syncytial mutation
did not have any effect on membrane fusion (17). It is possible that the N-glycosylation
moieties facilitate interaction with gB and are involved in gB-mediated fusion. Our
mutagenesis analysis indicates that the second glycosylation site at residue 58 plays a
crucial role since when it is changed, the resultant virus causes extensive cell fusion,
while the N-glycosylation site at residue 48 did not appear to produce a substantial
effect in either virus production or membrane fusion. Therefore, the N48 glycosylation
site appears to play a secondary role, potentially involved in other unknown functions
of gK. The apparent conservation of the distance between N-linked glycosylation sites
in the amino terminus of alphaherpesvirus gKs suggests that this domain bracketed by
the N glycosylation sites may play a role in binding a host protein. Alternatively, the use
of N-linked glycosylation to evade humoral immunity is well documented (58, 59). In
addition, the VC2 live attenuated vaccine strain, which has both N glycosylation sites
deleted, has been shown in guinea pigs and mice to generate robust immune responses
that are superior to those produced by its parental wild-type virus HSV-1(F) (26, 28, 29;
unpublished observations). Finally, mutant N58A and the double mutant N48A N58A
produced significantly smaller amounts of gK as detected in Western immunoblots. We
believe that this was primarily due to solubility problems since lack of glycosylation causes
increased aggregation. However, it is also possible that smaller amounts of gK may have
contributed to the generation of the observed syncytial phenotype.

The role of cysteine residues within the amino terminus of gK in infectious virus
production and virus-induced cell fusion. Syncytial cysteine mutants were defective for
growth in cell pellet fractions, and little infectious virus was recovered from the supernatant
fraction. Therefore, we hypothesize that these cysteine residues are involved in the overall
structure of the amino terminus of gK through disulfide bond formation. This allows the
consideration that mutagenesis of the N58 glycosylation site that produces a syncytial
phenotype may displace formation of the appropriate disulfide bond involving the cysteine
residues that appear to also be involved in regulation of membrane fusion.

The phenotypes of the cysteine mutants suggest disulfide bonding between C37
and C114 as well as between C82 and C243. These biological data support our
predicted structure for gK as these amino acid pairings are found to be in close
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proximity in the model. We have refined our model to include these new constraints
(Fig. 9). Including the disulfide bonds improved the quality of the model, as indicated
by both LGscore and MaxSub score. Including the disulfide bonding between residues
C82 and C114 resulted in little change to the predicted structure. However, including
disulfide bonding between residues C37 and C114 resulted in a dramatic shortening of
the first predicted beta sheet in the amino terminus of gK.

We have reported previously that virus with a deletion in amino acids 31 to 47 of
HSV-1 gK, which includes the first cysteine, exhibits a gK-null phenotype (25). A virus in
which the entire amino terminus of gK was deleted was similarly defective. However,
virus with a deletion spanning amino acids 31 to 68 of HSV-1 gK, which includes the
first cysteine as well as both N-linked glycosylation sites, exhibits only a 1-log defect in
peak titers and is not syncytial. These results suggest a potentially important relation-
ship between glycosylation and disulfide bond formation in the amino terminus of gK.
We hypothesize that C38 and C115 residues are critical to achieving proper structural
conformation of the amino terminus of gK. The inability to achieve the proper structure
may interfere with gK’s transit or function in some manner that results in a null
phenotype. Interestingly mutation of the glycosylation site N58 leads to a syncytial
phenotype, while deletion of the region of amino acids 31 to 68 that contains both
N-glycosylation sites does not. It is possible that the gK domain that is bracketed and
includes both glycosylation sites may be dispensable for infectious virus production but
necessary for gK regulation of gB-mediated cell fusion since syncytial mutations in gB
fail to cause fusion in the presence of the gK(d31– 68) mutant (25). Our syncytial gK
mutants appear to be dominant negative since syncytial mutants in this study pro-
duced syncytial plaques on the gK-complementing cell line VK302. These gK mutants
may act in a dominant negative manner by retaining their ability to bind gB while being
unable to regulate its activity. This ability to bind gB may prevent wild-type gK from
binding and thus restoring the proper regulation of fusion.

An intriguing possibility suggested by the role of disulfide bond reduction in the
conversion of many viral fusion proteins from a pre- to postfusion conformation is that
the probable disulfide linkage between cysteines 82 and 243 of gK acts as a molecular
switch for gB-mediated fusion. The generation of free thiols by reduction of disulfide
bonds has been shown to be important for fusion protein activity in multiple virus
families (60). Protein disulfide isomerases (PDI) are cellular enzymes that catalyze the
breaking and formation of disulfide bonds (61). For Newcastle disease virus (NDV)
overexpression of PDI increased conversion of F protein to the postfusion conformation
and enhanced fusogenicity of NDV (62). Additionally, entry of HIV-1 requires disulfide
exchange (63), and inhibition of thiol-reactive proteins prevents entry of HIV (64, 65).
Similarly, thiol-reactive proteins may be involved in HSV-1 membrane fusion. The high

FIG 9 Refinement to gK protein model. Remodeled gK protein incorporates disulfide bond formation
between C37 and C114 and between C82 and C243. Extracellular domains of the early and the refined
gK protein structures are superimposed and shown in gold and blue, respectively. The red box highlights
the predicted shortening of the first beta strand due to the introduction of disulfide bonding between
C37 and C114. The initial gK models had an LGscore and MaxSub scores of 1.977 and 0.160, respectively.
Including the disulfide bonds improved both scores (LGscore, 2.058; Maxsub score, 0.166). Asparagine
and cysteine residues are shown as sticks.
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degree of predicted structural conservation among all alphaherpesvirus-encoded gKs
suggests that gK functions in a similar manner to facilitate virus entry especially into
neuronal axons. This hypothesis is currently being tested in our laboratory for other
alphaherpesviruses including varicella-zoster virus (VZV) and bovine herpesvirus-1
(BHV-1).

MATERIALS AND METHODS
Cells. African green monkey kidney cells (Vero cells) were obtained from the ATCC (Rockville, MD).

The Vero cell-derived gK-complementing cell line VK302 was originally obtained from David Johnson
(Oregon Health Sciences University, Portland, OR). Both Vero and VK302 cells were maintained in
Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum
(FBS) and antibiotics.

Immunohistochemistry. Vero or VK302 cells were infected with either VC1 or mutant virus for 48 h
and fixed with 3.5% formalin overnight at room temperature. After cells were washed, they were
incubated with anti-HSV-1 antibody (Agilent, Santa Clara, CA) for 1 h. Subsequently, polyclonal goat
anti-rabbit immunoglobulins conjugated to horseradish peroxidase (HRP) (Agilent, Santa Clara, CA) were
added for 30 min at room temperature. For detection, NovaRED peroxidase (HRP) substrate (Vector,
Burlingame, CA) was applied until an appropriate level of staining was obtained. Images were obtained
using an Olympus IX2 inverted microscope and cellSens software (Olympus, Waltham, MA).

Virus and BAC mutagenesis. Bacterial artificial chromosome (BAC) plasmid pYEbac102 carrying the
HSV-1(F) genome (a gift from Y. Kawaguchi, University of Tokyo, Japan) was used to construct YE102-VC1
(VC1) as previously described (30). VC1 was used to construct all recombinant BACs described in this
study. High-efficiency markerless DNA manipulation of VC1 was achieved using two-step red-mediated
recombination (66). Oligonucleotides used in the construction of recombinant virus are presented in
Table 2. Recombinant HSV-1 was recovered after BACs were transfected into Vero cells using Lipo-
fectamine according to the manufacturer’s protocol. DNA was extracted from viral stocks, and gK was
sequenced to ensure the presence of the desired mutation.

Immunoprecipitation and Western blot assays. Uninfected and infected cells were lysed using
NP-40. Lysate was immunoprecipitated with protein G magnetic Dynabeads (Thermo Fisher) bound to
mouse V5 antibody (46-1157; Invitrogen) according to the manufacturer’s instructions. The protein was
eluted from the magnetic beads in 40 �l of elution buffer and used for immunoblot assays. Immunoblot
assays were carried out using anti-VP5 (ab6508; Abcam), rabbit anti-beta tubulin (ab179513; Abcam),
goat anti-mouse HRP (Abcam), and goat anti-rabbit HRP (Abcam). Intensity quantification of Western
blots was carried out using ImageJ (67).

Molecular visualization. The structure of HSV-1 gK was predicted using assembly of separate
domain models (19). Molecular visualization was performed with UCSF ChimeraX, developed by the
Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco
(UCSF), to generate a hybrid surface-cartoon representation of the protein. The N terminus and the third

TABLE 2 Oligonucleotides used in this studya

Name Sequence

N48A forward CGCTGCACCGATGTATTTACGCGGTACGCCCCACCGGCACCAACGCAGACACCGCCCTCGCAACCAATTAACCAATTCTGATTAG
N48A reverse CGTCGGGGCCCCCAGAAACAATAGGGTCTGGTTCATTTTCATCCACACGAGGGCGGTGTCTGCGTTGGTGCCGGTGGGGCGTACCG

AGGATGACGACGATAAGTAGGG
N58A forward GTACGCCCCACCGGCACCAACAACGACACCGCCCTCGTGTGGATGAAAATGGCACAGACCCTATTGCAACCAATTAACCAATT

CTGATTAG
N58A reverse CGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCCGTCGGGGCCCCCAGAAACAATAGGGTCTGTGCCATTTTC

AGGATGACGACGATAAGTAGGG
Delta C37 forward TCCACACGAGGGCGGTGTCGTTGTTGGTGCCGGTGGGGCGTACCGCGTAAATTCGGTGCAGCGGACTGGCACCGAAG

AGGATGACGACGATAAGTAGGG
Delta C37 reverse GGCGTACGGCCTCGTGCTCGTGTGGTACACCGTCTTCGGTGCCAGTCCGCTGCACCGAATTTACGCGGTACGCCCCACCGGCA

CAACCAATTAACCAATTCTGATTAG
Delta C82 forward CATGGCGTCGGGTGGGACCTGGAAGGGCACGACCCTACCCGCGATAAGATTGGCGTAGATATGGGCGTGGTTGCGCCAGC

AGGATGACGACGATAAGTAGGG
Delta C82 reverse TGGGGGCCCCGACGCACCCCCCCAACGGGGGCTGGCGCAACCACGCCCATATCTACGCCAATCTTATCGCGGGTAGGGTCGT

CAACCAATTAACCAATTCTGATTAG
Delta C114 forward GAACCACCCTACGACCACCAGACGCACCCGTGTGTACCATAGGGTCTCCAGTGCAGGATGACGACGATAAGTAGGG
Delta C114 reverse GGTCCCACCCGACGCCATGAATCGTCGGATCATGAACGTCCACGAGGCAGTTAACGCACTGGAGACCCTATGGTACACACGGGTGC

CAACCAATTAACCAATTCTGATTAG
Delta C243 forward TCTGTCAGGCCGATGGTGGAGACAAAACACCAGGTGGTGATGGTCAGAAACAGGGGGTATGTGATCGC

AGGATGACGACGATAAGTAGGG
Delta C243 reverse CTTTGTGGCCGTGGGTCTCATCGTCGGCACCGCTTTCATATCCCGGGGGGCAGCGATCACATACCCCCTGTTTCT

GACCATCACCACCTGCAACCAATTAACCAATTCTGATTAG
HSV-1 gK F GACACCATAAGTACGTGGCAT
HSV-1 gK R CTGGGTCCTCCTACAGCTAGT
aBoldface indicates homology to the pEPkan-S plasmid sequence.
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domain, an extracellular loop, are shown in orange ribbon diagrams with a transparent surface, and the
rest of the protein, including the transmembrane domain, is shown in blue. The gK protein model has
been placed in a lipid bilayer using the PPM server (68). Based on PPM predictions, the thickness of the
hydrophobic depth of the protein is estimated to be 17.0 � 1.5 Å, while the ΔG of protein transfer into
the membrane with a tilt angle of 35 � 4° is estimated to be �20.4 kcal/mol. Model quality was
determined via the LGscore and MaxSub score (69).
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